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Classifying Problems 

•   We have seen that decision problems (and their associated  

     languages) can be classified into  decidable  and  undecidable. 

     This result was obtained by Turing and others in the 1930’ —  

     before the invention of computers. 

•   After the invention of computers, it became clear that it would be 

    useful to classify decidable problems, to distinguish harder problems 

    from easier problems 

    This led to the development of  computational complexity  theory 

    in the 1960’s and 1970’s 
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Question 

Which of these decision problem is hardest? 

1. For a given  n,  is  n  prime? 

2. For a given  n,  is  n  equal to the sum of 3 primes?¹ 

3. For a given  n, does the  nth person in the Vancouver 

telephone directory have first initial  J? 

¹see  http://www.faber.co.uk/faber/million_dollar.asp 
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Complexity Measures 

Every decidable problem has a  set of algorithms  ( TMs)  that solve it. 

What property of this set of algorithms could we measure to classify 

the problem? 

•   The  difficulty  of constructing such an algorithm? 

•   The  length  of the shortest possible algorithm? 

     (Giving a  static  complexity measure².) 

•    The  efficiency  of the most efficient possible algorithm? 

      (Giving a  dynamic  complexity measure.) 

         ²This has proved useful for classifying the complexity of strings, where 

it is called  Kolmogorov  complexity.  See “Introduction to Kolmogorov Complexity 

and its Applications”,  Li and Vitani,  1993 
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Dynamic Complexity Measures 

A dynamic complexity measure is a numerical function that measures 

the maximum  resources  used by an algorithm to compute the answer 

to a given instance 

To define a dynamic complexity measure we have to define for each 

possible algorithm  M  a numerical function           on the same inputs 
M
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Blum’s  Axioms 

Blum proposed³  that any useful dynamic complexity measure should 

satisfy the following properties: 

•                 is defined exactly when  M(x)  is defined 

•   The problem: for given  M,  x,  r,  does                     ?  is decidable 

       ³see  “A machine independent theory of the complexity of recursive functions”, 

Blum,  Journal of the ACM 14, pp 322-336, (1967) 

)(xM

rxM )(
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Time Complexity 

The most critical computational resource is often  time,  so the most 

useful complexity measure is often  time complexity 

If we take Turing Machine as our model of computation, then we can 

give a precise measure of the time resources used by a computation 

Definition           The  time complexity  of a Turing Machine  T  is the   

            function                  such that                        is the number of  

            steps taken by the computation  T(x) 

(Note that if  T(x)  does not halt, then                      is undefined.) 

TTime )(Time xT

)(Time xT
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Space Complexity 

Another important computational resource is amount of “memory” 

used by an algorithm, that is  space.  The corresponding complexity 

measure is  space complexity 

As with time, if we take Turing Machine as our model of computation, 

then we can easily give a measure of the space resources used by a 

computation 

Definition           The  space complexity  of a Turing Machine  T  is the   

            function                  such that                        is the number of  

            distinct tape cells visited during the computation  T(x) 

(Note that if  T(x)  does not halt, then                      is undefined.) 

TSpace )(Space xT

)(Space xT
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Time Complexity of Problems  I 

Now it seems that we could define the time complexity of a  problem  

as the time complexity of the most efficient Turing Machine that 

decides the corresponding language, but there is a difficulty … 
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It may be  impossible  to define the most efficient Turing Machine, 

because: 

•   It may be possible to speed up the computation by using a 

     bigger alphabet 

•   It may be possible to speed up the computation by using  

    more tapes 
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Linear Speed-up Theorem 

Theorem       For any Turing Machine  T  that decides a language  L,   

        and any m > 0,  there is another Turing Machine  T’  that also   
        decides  L,  such that 

 

 

 
||2

)(Time
)(Time ' x

m

x
x T

T 

(see Papadimitriou,  Theorem 2.2) 
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Proof 

The machine  T'  has a larger alphabet than  T,  many more states, and 

an extra tape. 

The alphabet includes an extra symbol for each possible  k-tuple  of 

symbols in the alphabet of  T 

T'  first  compresses  its input by writing a symbol on a new tape encoding 

each  k-tuple of symbols of the original input. It then returns the head to 

the leftmost cell.  This takes  2|x|  steps in total 

T‘  then simulates  T  by manipulating these more complex symbols to 

achieve the same changes as  T.     T'  can simulate  k  steps of  T  by 

reading and changing at most  3  complex symbols, which can be done 

in  6  steps 

Choosing  k=6m  gives a speed-up by a factor of  m 
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Table Look-Up 

We can do a similar trick to speed up the computation on any finite 

set of inputs. 

Theorem       For any Turing Machine  T  that decides a language  L,   

        and any m > 0,  there is another Turing Machine  T'  that also   
        decides  L,  such that for all inputs  x  with  |x|m, 

 

 
||)(Time ' xxT 
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Proof Idea 

The machine  T'  has additional states corresponding to each possible input 

of  length at most  m 

T'  first reads to the end of the input, remembering what it has seen by 

going into the corresponding state. If it reaches the end of the input in 

one of its special states it then immediately halts, giving the desired 

answer. 

Otherwise it returns to the start of the input and behaves like  T 
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Time Complexity of Problems  II 

Given any decidable language, and any TM that decides it, we have 

seen that we can construct a TM that  

•   Decides it faster by any linear factor 

•   Decides it faster for all input up to some fixed length  

So we cannot define an exact time complexity for a language, but 

we can give an  asymptotic  form … 
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Math Prerequisites 

Let  f  and  g  be two functions                             .  We say that   

f(n)=O(g(n))  if there exist positive integers  c  and       such that for  

every 

N:, gf

0n

0nn >
)()( ncgnf 

Examples 

)( knO

)(110375 323 nOnnn 

•   A polynomial of degree  k  is 

•  

•    

) (log)log( nOnk 

) (loglog nOn ba 
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Math Prerequisites 

Let  f  and  g  be two functions                             .  We say that   

f(n)=o(g(n))  if  

 

 

In other words,  f(n)=o(g(n))  means that, for any real number  c,  there  

is       such that for every 
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Definition        

        For any function  f,  we say that the time complexity of a  
        decidable language  L  is in  O(f)  if there exists a Turing  

        Machine  T  which decides  L,  and constants        and   c      

        such that for all inputs  x  with 

 

 
|)(|)(Time xcfxT 

0n

0|| nx >
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Complexity Classes 

Now we are in a position to divide up the decidable languages into 

classes, according to their time complexity 

Definition        

        The  time complexity class  TIME[f]  is defined to be the class  

        of all languages with time complexity in  O(f) 

 

(Note, it is sometimes called  DTIME[f] — for Deterministic Time) 
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