

Complexity of Problems

 11-2

Classifying Problems

• We have seen that decision problems (and their associated

 languages) can be classified into decidable and undecidable.

 This result was obtained by Turing and others in the 1930’ —

 before the invention of computers.

• After the invention of computers, it became clear that it would be

 useful to classify decidable problems, to distinguish harder problems

 from easier problems

 This led to the development of computational complexity theory

 in the 1960’s and 1970’s

 11-3

The Aim

All

Languages

Decidable

Languages

“Easy” Problems “Hard” Problems

 11-4

Question

Which of these decision problem is hardest?

1. For a given n, is n prime?

2. For a given n, is n equal to the sum of 3 primes?¹

3. For a given n, does the nth person in the Vancouver

telephone directory have first initial J?

¹see http://www.faber.co.uk/faber/million_dollar.asp

 11-5

Complexity Measures

Every decidable problem has a set of algorithms ( TMs) that solve it.

What property of this set of algorithms could we measure to classify

the problem?

• The difficulty of constructing such an algorithm?

• The length of the shortest possible algorithm?

 (Giving a static complexity measure².)

• The efficiency of the most efficient possible algorithm?

 (Giving a dynamic complexity measure.)

 ²This has proved useful for classifying the complexity of strings, where

it is called Kolmogorov complexity. See “Introduction to Kolmogorov Complexity

and its Applications”, Li and Vitani, 1993

 11-6

Dynamic Complexity Measures

A dynamic complexity measure is a numerical function that measures

the maximum resources used by an algorithm to compute the answer

to a given instance

To define a dynamic complexity measure we have to define for each

possible algorithm M a numerical function on the same inputs
M

 11-7

Blum’s Axioms

Blum proposed³ that any useful dynamic complexity measure should

satisfy the following properties:

• is defined exactly when M(x) is defined

• The problem: for given M, x, r, does ? is decidable

 ³see “A machine independent theory of the complexity of recursive functions”,

Blum, Journal of the ACM 14, pp 322-336, (1967)

)(xM

rxM )(

 11-8

Time Complexity

The most critical computational resource is often time, so the most

useful complexity measure is often time complexity

If we take Turing Machine as our model of computation, then we can

give a precise measure of the time resources used by a computation

Definition The time complexity of a Turing Machine T is the

 function such that is the number of

 steps taken by the computation T(x)

(Note that if T(x) does not halt, then is undefined.)

TTime)(Time xT

)(Time xT

 11-9

Space Complexity

Another important computational resource is amount of “memory”

used by an algorithm, that is space. The corresponding complexity

measure is space complexity

As with time, if we take Turing Machine as our model of computation,

then we can easily give a measure of the space resources used by a

computation

Definition The space complexity of a Turing Machine T is the

 function such that is the number of

 distinct tape cells visited during the computation T(x)

(Note that if T(x) does not halt, then is undefined.)

TSpace)(Space xT

)(Space xT

 0

Time Complexity of Problems I

Now it seems that we could define the time complexity of a problem

as the time complexity of the most efficient Turing Machine that

decides the corresponding language, but there is a difficulty …

 1

It may be impossible to define the most efficient Turing Machine,

because:

• It may be possible to speed up the computation by using a

 bigger alphabet

• It may be possible to speed up the computation by using

 more tapes

 2

Linear Speed-up Theorem

Theorem For any Turing Machine T that decides a language L,

 and any m > 0, there is another Turing Machine T’ that also
 decides L, such that

||2

)(Time
)(Time ' x

m

x
x T

T 

(see Papadimitriou, Theorem 2.2)

 3

Proof

The machine T' has a larger alphabet than T, many more states, and

an extra tape.

The alphabet includes an extra symbol for each possible k-tuple of

symbols in the alphabet of T

T' first compresses its input by writing a symbol on a new tape encoding

each k-tuple of symbols of the original input. It then returns the head to

the leftmost cell. This takes 2|x| steps in total

T‘ then simulates T by manipulating these more complex symbols to

achieve the same changes as T. T' can simulate k steps of T by

reading and changing at most 3 complex symbols, which can be done

in 6 steps

Choosing k=6m gives a speed-up by a factor of m

 4

Table Look-Up

We can do a similar trick to speed up the computation on any finite

set of inputs.

Theorem For any Turing Machine T that decides a language L,

 and any m > 0, there is another Turing Machine T' that also
 decides L, such that for all inputs x with |x|m,

||)(Time ' xxT 

 5

Proof Idea

The machine T' has additional states corresponding to each possible input

of length at most m

T' first reads to the end of the input, remembering what it has seen by

going into the corresponding state. If it reaches the end of the input in

one of its special states it then immediately halts, giving the desired

answer.

Otherwise it returns to the start of the input and behaves like T

 6

Time Complexity of Problems II

Given any decidable language, and any TM that decides it, we have

seen that we can construct a TM that

• Decides it faster by any linear factor

• Decides it faster for all input up to some fixed length

So we cannot define an exact time complexity for a language, but

we can give an asymptotic form …

 7

Math Prerequisites

Let f and g be two functions . We say that

f(n)=O(g(n)) if there exist positive integers c and such that for

every

N:, gf

0n

0nn >
)()(ncgnf 

Examples

)(knO

)(110375 323 nOnnn 

• A polynomial of degree k is

•

•

) (log)log(nOnk 

) (loglog nOn ba 

 8

Math Prerequisites

Let f and g be two functions . We say that

f(n)=o(g(n)) if

In other words, f(n)=o(g(n)) means that, for any real number c, there

is such that for every

N:, gf

0n 0nn >

)()(ncgnf 

Examples

0
)(

)(
lim 

 ng

nf

n

)(1 kk non 
•

•

•

•

) (loglog 1 non kk 

1),(> aaon nk

),...(),(322 nonnon 

)(log mk non 

 9

Definition

 For any function f, we say that the time complexity of a
 decidable language L is in O(f) if there exists a Turing

 Machine T which decides L, and constants and c

 such that for all inputs x with

|)(|)(Time xcfxT 

0n

0|| nx >

 11-20

Complexity Classes

Now we are in a position to divide up the decidable languages into

classes, according to their time complexity

Definition

 The time complexity class TIME[f] is defined to be the class

 of all languages with time complexity in O(f)

(Note, it is sometimes called DTIME[f] — for Deterministic Time)

 11-21

All

Languages

Decidable

Languages

)2(nO)(2nO

) log(nnO

)(nO

Examples

